
NASA/CR-2001-211423

ICASE Report No. 2001-44

i
[

I
!

On the Conservation and Convergence to Weak

Solutions of Global Schemes

Mark H. Carpenter

NASA Langley Research Center, Hampton, Virginia

David Gottlieb and Chi-Wang Shu

Brown University, Providence, Rhode Island

December 2001



The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in hclping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information.

The NASA STI Program Office provides
access to the NASA ST/Database, the

largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA's
counterpart of peer-reviewed formal

professional papers, but having less
stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,
e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,
seminars, or other meetings sponsored or

cosponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,
often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to
NASA's mission.

Specialized services that complement the
ST1 Program Office's diverse offerings include

creating custom thesauri, building customized
data bases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

• Email your question via the Internet to

help @sti.nasa.gov

• Fax your question to the NASA STI
Help Desk at (301) 621-0134

• Telephone the NASA STI Help Desk at
(30 ! ) 62 t -0390

Write to:

NASA STI Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076- !320



NASA/CR-2001-211423

ICASE Report No. 2001-44

On the Conservation and Convergence to Weak
Solutions of Global Schemes

Mark H. Carpenter

NASA Langley Research Center, Hampton, Virginia

David Gottlieb and Chi-Wang Shu

Brown University, Providence, Rhode Island

ICASE

NASA Langley Research Center

Hampton, Virginia

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

December 2001



?.

Available from the following:

NASA Center for AeroSpace Information (CASI)

-" 7T2-Vgi_ii_a_v e

Hanover, MD 21076-1320

(301) 621-0390

r

National Technical Information Service (NTIS) _ _=_ _ . : ....

Springfield, VA 22161-217 ]

(703) 487-4650



ON THE CONSERVATION AND CONVERGENCE TO WEAK SOLUTIONS OF

GLOBAL SCHEMES*

MARK H. CARPENTER t, DAVID GOTTLIEB _, AND CttI-WANG StlU§

Abstract. In this paper we discuss the issue of conservation and convergence to weak solutions of several

global schemes, including the commonly used compact schemes and spectral collocation schemes, for solving

hyperbolic conservation laws. It is shown that such schemes, if convergent boundedly ahnost everywhere,

will converge to weak solutions. The results are extensions of the classical Lax-Wendroff theorem concerning

conservative schemes.

Key words, conservation laws, conservation, weak solutions, convergence

Subject classification. Applied and Numerical Mathematics

1. Introduction. We are interested in numerical solutions to the conservation laws:

(1.1) u, + f(u)x = 0, u(x,0) = _°(x), -1 < x < 1.

Here we have written (1.1) in the one dimensional form, but the results of this paper are also valid for multi

dimensions.

The purpose of this paper is not to study the issue of convergence. We actually assume that the numerical

solution converges boundedly a.e. (almost everywhere), to a certain function u(x, t). More precisely, for a

numerical scheme defined at the (uniform or nonuniform) grid points x j, 0 _< j < N, with Ax = max(xj+l -

xj) and vj(t) as the numerical solution at x = xj, we define the function v_,(x, t) by

(1.2) VAx(X,t) = v/(t), x/ _< x < Xi+l,

and assume that VAx(X,t) is uniformly bounded with respect to x, t, and Ax, and, as Ax -_ 0, VA_(X,t)

converges pointwise a.e. to u(x, t). See, e.g., [5, 16, 17, 20] for discussions, in the scalar case, of convergence

of some of the schemes studied in this paper, under the L _ boundedness assumption. We will concentrate

on the issue of whether the limit function u(x, t) is a weak solution to (1.1), that is whether it satisfies

/;(1.a) - (u(x,t)¢t(x,t) + f(u(x,t))¢x(X,t)) dxdt- u°(x)¢(x,O)dx = 0
1 1

for any smooth function ¢(x, t) which is compactly supported. Also, in this paper we only consider semidis-

crete method-of-lines schemes, i.e. schemes which are discretized in the spatial variable(s) only.

The classical result in this area is the famous Lax-Wendroff Theorem [11]:

Theorem 1.1. (Lax and Wendroff) If the numerical solution of a conservative scheme:

1 (j. _ :0(1.4) (vi)t + _ ½
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where the numerical flux

V"
(1.5) fj+½ = f(3_p,...,yj+q)

is local (i.e. p and q arc constants independent of Ax), Lipschitz (:ontinuous in every argument, and consistent

with the physical flux ](v, ..., v) = f(v), converges boundedly a.e. (almost everywhere) to a function u(x, t),

then u(x, t) is a weak solution to (1.1).

The proof follows easily from a summation by parts and an application of the dominant convergence

theorem. See Le'_que [13] for a slightly different version of this theorem and its proof.

Tile Lax-_h_ndroff Theorem, however, does not cover global schemes, i.e. schemes which can not be
^

written in the form (1.4) with a local flux fj+½. Examples of global schemes include the compact schemes

[12, 2, 3, 5], and various spectral Galerkin or collocation schemes (Fourier, Legendre, Chebyshev) [9, 1, 6].

We will extend the Lax Wendroff Theorem to these global schemes in this paper.

We remark that there are discussions in tiie literature about schemes which are not of the conservative

form (1.1) but nevertheless still converge to weak solutions. One such example is the class of schemes for

general curvilinear coordinates, see [19] for a proof that such schemes actually do converge to weak solutions.

In [8] the authors discussed conservation issues of Chebyshev methods. However, they only considered

the mean of the solution, that is, they verified that the linfit solution satisfies (1.3) with ¢(x, t) = 1.

The organization of the paper is as follows. In Section 2 we discuss compact schemes. Section 3 contains

the Legendre collocation method, while Section 4 discusses the Chebyshev method. Section 5 discusses the

Legendre approximation in the multi-domain case.

To close this section we mention that in this paper C (or c) is a generic constant.

2. Compact Schemes. Compact schemes are methods where the derivatives are approximated by

rational function operators on the discrete solutions. V_'e consider compact schemes defined on a uniform

grid x j, 0 < j < N. For example, a fourth order central compact approximation to the derivative is [12]:

1 1
(2.1) _ ((v_)j-1 + 4(v_)j + (v_)j+l) = _ (vj+l - vj-1)

and a third order upwind compact approximation to the derivative is [5]:

1 1
(2.2) 5 (-(v_)j-1 + 5(v_)j - (v/)j+l) = _ (3vj - 4vj-l + vj-2).

Adequate boundary conditions must be used for the compact schemes, to retain accuracy and stability, see

[2], [3] for details Together with boundary conditions, a compact scheme for (1.1) can be written as

(2.3) Pvt + Q f (v) = -r(vB - gB)

where v = (v0, ...VN)* is the numerical solution, 7- is a constant, vp = (v0, 0, ..., 0, VN)* is the boundary part

of the numerical solution, and gB = (go, O, ..., O, gN)* is the given boundary data. Depending on the wind

direction, one or both of the first and last components of vB and gB may also be zero(s). The matrices P

and Q satisfy the following conditions [3]:

• P is symmetric, and satisfies

(2.4) PC - ¢ = O(_x)

Here and below, ¢ -- (¢(x0), ..., ¢(XN))*, and ¢(x) is an arbitrary smooth (C j or smoother) function.

O(Ax) for a vector means that each component is bounded by a constant times Ax, and the constant

depends only on the derivatives of ¢(x);



,, Q is "ahnost" anti-symmetric, that is:

(2.5) O + Q* = R + s

where R = (rij), and rij = 0 except for roo and rNN. S is either identically 0 for the central compact

schemes, or satisfies

(2.6) S¢ = O(Ax)

for the upwind compact schemes, where ¢ is defined as before.

approximation to the derivative:

Also, Q is at least a first order

Q.

(2.7) Q¢ - ¢_ = O(_x).

We can easily verify that all tile compact schemes in [12, 2, 3, 5] satisfy the above conditions for P and

For such compact schemes we can state the following proposition:

Proposition 2.1. If the solution of the compact scheme (2.3) converges almost everywhere to a function

u(x, t), then u(x, t) is a weak solution to (1.1).

Proof: For any compactly supported, C 2 function ¢(x, t), we denote by ¢ = (¢(x0, t), ...,¢(XN, t))*, left

multiply (2.3) by ¢*, and integrate over [0,T] to obtain:

T ¢* (Pvt + Of(v)) =
dt 0

due to the zero boundary conditions of ¢. Now integrating by parts in t for the first term, taking a transpose

of the equation (which is a scalar), and using the symmetry of P and condition (2.5) of Q, we obtain:

-/J0 (v'POt + f(v)*Q¢) dr- (v'P0)It=o = - f(v)*SOdt

Or, considering (2.4), (2.6), (2.7), and the uniform boundedness (with respect to the mesh size Ax) of v,

I"(2.8) - (v*_b_ + f(v)*¢,) dt - (v*¢)It=0 = O(1)

1

where the constant term O(1) results from a summation of N = _ terms of O(Ax) quantities; the

constant depends only on the derivatives of ¢(x).

Recalling the definition of the function VA_(X, t) in (1.2), we can multiply (2.8) by Ax to obtain

T 1 jfl(2.9)- L /_, (VA,(X,t)¢_X(x,t) + f(W,,(x,t))¢_*(x,t)) dxdt- -, VA,(x,o)¢aX(x,O)dz =O(Ax)

where

(2.10) CA*(x,t) = ¢(xj,t), _,d)a*(x_,t) = ¢x(Xj,t), ¢p_*(x,t) = ¢t(xj,t), xj _< x < xj+l,

By assumption, v_,(x,t) converges to u(x,t) bonndedly a.e. There is no problem about the uniform

convergence of cA_ (X, t), ¢_* (X, t) and ",t'_x_tx, t_.jdue to the smoothness of ¢. By the dominant convergence

theorem, taking the limit as Ax --+ 0 in (2.9), we obtain (1.3). This proves that u(x, t) is a weak solution of

(1.1).



3. Legendre Spectral Collocation Schemes. The Legcndre collocation method can be written in

the following way:

(3.1) OUN(X,t)ot + COINf(UN(X't))OX = SV(UN(X,t)) + BUN(X,t)

where UN (X, t) is the numerical solution which is a polynomial of degree at most N in x, IN is the Legendre

interpolation operator, i.e. for any function g(x), INg(x) is the unique polynomial of degree at most N

satisfying INg(xj) = g(xj) at the N + 1 Legendre Gauss-Lobatto points xj, which are the zeros of the

polynomial (1 -x2)PN, where PN is the Legendre polynomial of degree N.

The term SV is the spectral viscosity term needed to stabilize the scheme and in order for the assumption

"va_(x, t) converges boundedly a.e. to a function u(x, t)" to be realistic. We consider here the superviscosity

term

(3.2) ,V(UN) -- e(--1)'_ [J_x (l -- x2) _--_x]_UN(X.t)_N2s-1

is the superviscosity coefficient, s is an integer growing with N [21, 10, 14, 15]. x,_ remark that this

superviscosity term is equivalent in practice to a low pass filter.

Finally, the boundary term BuN(x, t) could be either 0, or

T(UN(1, t) -- gl)(1 + x)P_(x),

or

T(UN(--1, t) -- g-1)(1 -- x)P_(x),

or a combination, depending on the wind directions at the boundary points. Here r is a constant chosen for

stability and gl and g_l are functions of the time only.

Let ¢(x, t) be a test function in C_. Take Cx-t (x, t) = Ig-l¢(x, t), then clearly ¢N-1 are polynomials of

degree at most N- 1 and vanish at both boundary points x = +l. Also ¢x-1 (x, t) --+ ¢(x, t), (¢N-1), (x, t) -+

Cx(x, t), and (¢N-1)t(x, t) --+ Ct(x, t) uniformly.

We denote now by

and by

(f,g)= f(x)g(x)dx
l

N

(f, g)N : ___ f(xj)g(xj)wj
k=0

where wj > 0 are the weights in the Gauss-Lobatto formula. W_ note that

polynomial of degree at most 2N - 1.

(f,g)N = (f,g) if fg is a

We first show that the boundary terms do not cause a problem:

Lemma 3.1.

(3.3) (¢N-1, BUN) = O.



Proofi Westartbyobservingthat

((_N-I,BUN) = ((_N-1 BUN)N.

BUN vanishes for the inner Gauss-Lobatto points and ¢N-1 vanishes at the boundaries and therefore the

Lemma is proven.

With (3.3), we multiply (3.1) by ¢N-1 (x, t), integrate over x, and integrate by parts for the second term

to obtain

oux(x,t) f_l OON-,(x,t)1 ¢N-1 (x, t) Ot dx - t Ox INI(UN (X, t)) d*

_(--1) s

(3.4) J- (1 - uN(x, t)- ¢__, (x, t) dx.
/y2s--1 l

V_ now estimate the right hand side of (3.4):

Lemma 3.2.

(3.5) lim N2,_ 1 CN-l(x,t) (1-- ] UN(x,t)dx = O.N-,_ l OxJ

Also, the quantity under tile limit sign is uniformly bounded with respect to t.

Proof: Since CN-I is a polynomial of degree N - 1,

N-1

CN-l(x,t) = _ 5_,N(t)5(_)
k=0

where _)k,N(t) are the collocation Legendre coefficients of the test function ¢. Note that

.. " OxJ Pk(x) = (-1)_k'(k+ 1)'Pk(z),

and therefore

N

s _-

(¢N-I,SI'(UN)) = (--1) _ E k'(k + 1)_6k,N(t)_k,N(t)(Pk,Pk),
k=0

Here fik,N are the Legendre collocation coefficients of uN. We note that as a consequence of the uniform

boundedness of UN(Xj) and the fact that ¢ is in C_ °,

(3.6) [dPk, N(t)_tk,N(t)t <-- _---5"

This implies (3.5) and the uniform boundedness of the quantity under the limit sign with respect to t.

We thus only have to deal with the left hand side of (3.4). We integrate (3.4) in t, integrate by parts for

the first term, and use Lemma 3.2 to obtain:

_T f9 ( 0¢N-I (X' t) oCN-l(X,t)) dxdt- UN(X, t) Ot + INf(UN(Z, t)) OX
1

(3.7) - UN(x,O)¢N-,(x,O)dx = O(1).
1



It looks like we can immediately take tile limit as in the Lax-_,Vendroff Theorem. Tile trouble is that, we

have only assumed the uniform boundedness of UN(Xj, t), hence of f(UN(Xj, t)), but this does not imply the

uniform boundedness of either uN(x, t) or Ixf(uN(x, t)) due to tile lack of regularity.

We need tile following Lemma:

Lemma 3.3. Let v.x, be the pieeewise linear polynomial taking the values UN(Xj, t), then

(3.8) (_N (x, t), 0¢N__(x, t) (_,ot ) = @,_ 0¢N-,Ot t)] + o(1),

(3.9) (Iuf(Us(X,t)), OCN-l(x,t)Ox )= (INf(VA_), OCN-,(X,ox t))+O(1).

Proofi We will switch back and forth between integrals and quadrature summations:

(UN(X,t), OCN _(X, 0¢N--_(X,Ot t) ) = ( uN(x't)' Ot t) ) N

N

= _ _(x_, t)0¢N_, (_, t)
Ot

j=O

_ O(z)v_(_, _x= t)(¢N-l) t (X, t)dx

1

where

O(x) _J-- , xj < x < xj+l.
Xj+l -- Xj

In [18] it has been established that O(x) is uniformly bounded and converges a.e to 1 as Ax _ 0.

This proves (3.8). The proof for (3.9) is similar.

We can state now

Theorem 3.4. If the function VA_(X, t) defined in (1.2), obtained from the solution of the Legendre collo-

cation scheme (3.1) at the Legendre Gauss-Lobatto points xj, converges ahnost everywhere to a function

u(x, t), then u(x, t) is a weak solution to (1.1).

Proof: By assumption, vaz(x, t) converges to u(x, t) boundedly a.e. Also, there is no problem about the

uniform convergence of 0_S- 1(x, t), '_(¢N-1)x (x, t) and (¢/V_l)_(x, t) due to the smoothness of ¢. Using

the dominant convergence theorem, taking the limit as Ax _ 0 in (3.8), (3.9) and (3.7), we obtain (1.3).

This proves that u(x, t) is a weak solution of (1.1).

We close this section by commenting on other spectral viscosity terms in (3.1) that stabilize the Legendre
method. One such term is

0 ,_ Ou_.
u_

where the spectral viscosity operator Q is defined by

N

= Z
k=O



where

and

N

k=0

(_k = O,k < mN

1> #k > 1- (mN  ,k > mN
- - \k]

with mN growing with N.

V_ can establish also for this viscosity term that

(¢N-1, Sl'(uN)) _ 0

and therefore the result above holds also for this kind of spectral viscosity.

4. Chebyshev Spectral Collocation Schemes. In this section we consider the Chebyshev collocation

schemes. These are more difficult to analyze than the Legendre method because of the weight function

The Chebyshev collocation method call be written in the following way:

[(4.1) OuiV(x,t) OJNf(UN(X,t)) _ ¢(--1) s _ UN(X,t) + BUN(X,t)
Ot + Ox N 2_-1

where again ux(x, t) is tile numerical solution which is a polynomial of degree at most N in x, .IN is the

Chebyshev interpolation operator, i.e. for any function g(x), JNg(x) is tile unique polynomial of degree at

most N satisfying .INg(xj) = g(xj) at the N + 1 Chebyshev Gauss-Lobatto points x_. e is the superviscosity

coefficient, s is an integer growing with N [21, 14, 15]. We remark again that this superviscosity term, which

in practice is equivalent to a low pass filter, or a similar vanishing viscosity term [16, 17], is needed in order

for the assumption "VA,(X,t) converges boundedly a.e. to a function u(x,t)" to be realistic. Finally, the

boundary term BuN(x, t) could be either 0, or

T(UN(1, t) - g,)(1 + x)T_.(x),

or

T(UN(--1,t) -- g-l)(1 - x)T)(x),

or a combination, depending on the wind directions at the boundary points. Here r is a constant chosen for

stability and gl and g_l are functions of the time only.

Let ¢(x, t) be a test function in C_, that is, all x derivatives of ¢(x, t) up to order 5 vanish at the boundary

points x = 4-1. Such test functions are, of course, dense in C_. It follows that (1 - x;)-3/2¢(x, t) is in Co3.

We denote the (N- 5)-th degree Chebyshev interpolation polynomial of the function (1 -x 2)-3/2¢(x, t) by

(4.2) _N-5(X, t) = JN-S((1 -- x2)-3/2¢(x, t)),

and note that.

(x-5(x,t) --+ (1 - x2)-3/2¢(x,t),

O_N-5(x,t) 0((1 -- X2)-3/2¢(x,t)) O_'_5(x,t) O ((1- x2)-3/2dP(x,t))
Ox _ Ox ' Ot _ Ot '



uniformly.Wenowtake

(4.3) CN__(.,t) (1 = _= - x )-{N-,,(., t),

then CN-I is a polynomial of degree at most N - 1 and vanishes at both boundary points x = 4-1 together

with its first and second z derivatives. Moreover, it can be easily verified that

(4.4) 'i'N- 1 (X' t) ( _)N- 1 (a;,_) _ (_'N-I(X, t) "_vff- x_ + ¢(x, t), \_-/x -+ ¢_(x' t), \_], -+ ¢,(., t),

uniforml>

We again first show that the boundary term does not cause a problem:

Lemma 4.1.

/ CN-_(_, t)(4.5) (1 + x)T_(x) da_ = 0, _ CN- 1(x, t)(1 - x)T_.(x) dx = O.

+ x)T_ (x)

Proof: We only prove the first equality. Zero boundary values of "_"N-I(X, t) and its first x derivative imply

j__l ( I/;,N_ 1 (X, t_) )
dx = - TN(X) (1 + x) dx

----/', _ k.TN(x) (0¢N-1 (X, t).(1 +m)_t__fr0(¢'---_(_t)) dxl-x

:0.

The last equality is due to the fact that

OY"N-l(x't)(l_7.x- + x) -sw't/f_N-1(X't)l -- X -- 0}_'N-1 (X' t)(10X + X) + (1 +x)(1 - xu)_N_s(x,t)

is a polynomial of degree at most N - 1, hence is orthogonal to T_. (x) with the weight 7]A:_.

With (4.5), we can now multiply (4.1) by Cw_,(z,t)_, integrate over x, and integrate by parts for the
second term to obtain

(4.6) - e(-l)*/_" _Lw_,(x,t) [ 0 ]2,N2_-_ _ _ (1-*=)_} usv(x,t) dx.

We now estimate the right hand side of (4.6):

Lemma 4.2.

(4.7) g-+_limN2,_ 1 I _ UN(X,t) dx = O.

Also, the quantity under the limit sign is uniformly bounded with respect to t.

Proof: Integrating by parts 2s times, and notMng that the boundary terms are always 0 because of the fact

that g'N-I (x, t) vanishes at, the boundaries and because of the factor Vq-- x 2, we obtain

S' [ S' [(4.8) li'N-1 (x' t) UN(x,t) dx = g, sv-l(x,t)dx.



Recallingtiledefinitionof _N-5(x, t) in (4.2), we have

N-5

k=0

where _t.(t) are the collocation Chebyshev coemcients of the Cg function (1 -x2)-s/2O(x, t), hence

(4.9) I_k (t) l _<kC---ff.

Now, by tile relationship between ¢N-1 and _N-5 in (4.3):

N-5

_N-l(x,t) = (1 -- X2) 2 E _k(t)Tk(x)
k=0

N-5

k=0

N-5 N-5
1 1

= _ }2 _(t)r_(_) - _ Z _(t)(r_+,(_) + Tk_.,(_))
k=0 k=0

N-5
1

+_ }2 _k(t) (Tk+_(x)+ 2Tk(*) + T___(_))
k=0

N-1

=±
16 E (_.-4(t) - 4_k-2(t) + 6_.(t) - 4_k+2(t) + _k+4(t)) T_.(x)

k=0

N-1

- }2 _,_(t)Tk(_)
k=0

where we take the convention that _k(t) = 0 for k < 0 or k > N - 5. This, together with (4.9), clearly

implies

(4.10) I_k(t) I _< C.

V_'e now use the equality

0 ]2_ N-I(4.11) lx/i--2_-X_x Crv_,(x,t) = E(-1)*k2%TJk(t)Tk(x)
k=0

and the integral-quadrature equivalence:

]_ uN(x,t) _ CN-l(x,t)dx = EWjUN(Xj,t)
l _ j=0

where xj and .wj are the nodes and weights of the Chebyshev Gauss-Lobatto quadrature formula, because

the integrand

uN(_, t) _,_-__(z, t)

is a polynomial of degree at most 2N - 1. This, together with the uniform boundedness of UN(Xj, t) and

(4.8), (4.10) and (4.11), implies (4.7) and the uniform boundedness of the quantity under the limit sign with

respect to t.



We thus only have to deal with the left hand side of (4.6). We integrate (4.6) in t, integrate by parts fi)r

the first term, and use Lemma 4.2 to obtain:

LLI t,
(4.12)

CN- _(x,t)
+ JNf(uN(x,t)) ( _ )x) dxdt

f- ug(x,O) CN-l(x'O) dx = o(1).
1 V/_- X 2

Again, the difficulty is that we have only assumed the uniform boundedness of UN (Xj, t), hence of f (UN (Xj, t)),

not the uniform boundedness of either uN(x, t) or JNf(UN(X, t)). We again get around this by switching

between integrals and quadrature summations:

(4.13) = _-_u,__ \ux(x_'t) k _- ]_
j=0 x_xj

because we can easily verify that the integrand

(¢x__(x,t)_
+ J_4(_N(x, t)) \ _ ] • ) d_

+ f(uN(xj, t)) (_/'N-l(x,t)

+ J_f(_N(x,t)) ( _'N-'(x'91,/i-:_-_ /,))

is a. polynomial of degree at inost 2N - 1. Recalling the definition of the function VA=(X, t) in (1.2) and that

of ¢A'(x,t) etc. in (2.10), we can use (4.13) to rewrite (4.12) as

(4.14)

where

O(x) \ _ It +f(v_(x,t))\ _ ]. ,] dxdt

fff (_'N- 1 (X, 9) _ dxx- O(x)va=(x,O) dx = o(1)

0(x) w_vq-x 2-- , Xj _ X < X j+ 1.
Xj+l -- xj

Clearly, O(x) is unifornfly bounded and converges to 1 as Ax -4 0. By assumption, VA=(X, t) converges to

u(x, t) boundedly a.e. Also, (4.4) guarantees the uniform convergence of the ¢N-1 related terms to the right

limits. Using the dominant convergence theorem, taking the linfit as Ax _ 0 in (4.14), we obtain (1.3).

This proves that u(x, t) is a weak solution of (1.1), i.e. we have proved the following

Proposition 4.3. If the flmction VAx(X, t) defined in (1.2), obtained from the solution of the Chebyshev

collocation scheme (4.1) at the Chebyshev Gauss-Lobatto points xj, converges almost everywhere to a

function u(x, t), then u(x,t) is a weak solution to (1.1).

5. Multi-Domain Legendre Methods. In this section we will discuss stable and conservative inter-

face boundary conditions for the multi-domain Legendre method applied to equation (1.1). \_ assume that

the domain -1 _< x < 1 is divided into two domains, and for tile sake of siml)licity we assume that the

10



interface point is x = O. We will d6iiot.e by UN(X, t) the numerical approximation in -1 ( x _< 0 and by

VN(X,t) the solution at 0 < x < 1. Tile multi-(lonmin Legendre method is given by

OttNo--[-+ I_:(_x)

OVN 00-7- + 1_'f(v_,)

(5.1)

(5.2)

= B(UN(-1, t)) + T1Qt(x) [f+(uN(O, t)) -- f+(vN(O, t))]

+_2O_(x) [f- O,u(o, t)) - f-(_,N(o, t))] + s_'(_,_),

= _-_O"(x) [y+(vN(o,t)) - .f+(,,_,.(o,t))]

+T_Q"(x) [/-(_N (o, t)) - I-(_,N(o, t))]

+SV(VN) + B(VN(1,t)).

Equation (5.1) holds in the interval -1 < x < 0, and (5.2) holds in 0 < x < 1. I[vf(uN ) interpolates f(UN)

at the zeroes _j of tile polynomial xQ t and I_!f(VN) interpolates f(VN) at the zeroes r/j of the polynomial

xQ I1, where

Qt(x ) = (1 + x)P'N(2X + 1),QH(x) = (1 - X)PN(2X-- 1)
PN(1) PN(--1)

The spectral viscosities SI'(UN) and SI'(vN) are of the form

(5.3) SI'(UN) = e N2.__1 x(x + 1) ,: UN,

(5.4) Si'(VN) = c--_--ffT:T- x(1 -- x)_ x vN.

At this point we stress that the results of this section are valid only for this form of spectral viscosity

and not for the others discussed in Section 3. Tile reason for that will be evident in the proof.

Finally the boundary operators B at the ends of the interval -1 < x < 1 are left unspecified for now.

We will also denote the scalar product (P,q)N = __,_=OpT(_j)q(_j)cVj if p(x) and q(x) are defined in

[-1,0] and (p, q)N = _]f=O PT(_j)q(rlJ)a)J if p(x) and q(x) are defined in [0, 1], and wj are the weights in

tile Gauss-Lobatto Legendre quadrature formula. Note that if pq is a polynomial of degree at most 2N - 1

defined in [-1,0] then

(P, q)N = (P, q) = pT(x)q(x)dx.
1

A similar formula holds in the interval [0, 1].

Our aim in this section is to show that the choice of the parameters ri, i = 1, 4 that. leads to linear

stability is sufficient for proving conservation, i.e. if the numerical solution Us(X,t),vN(x,t) converges

boundedly a.e to functions u(x, t), v(x, t), then the solution w defined by w(x, t) = u(x, t) if -1 < x < 0 and

w(x, t) = v(x, t) if 0 < x < 1 converges to the weak solution of (1.1).

\_ will discuss first the stability of (5.1)-(5.2). We state

Proposition g.1. The boundary operators are dissipative, i.e.

(5.5) (us, B(UN(--1, t)))_, + lug(--1, t)Au,_(-1, t) < 6,
2 -

(5.6) (vx, B(VN(1 t)))N -- --IvT(--1, t)AvN(1, t) < 0.
: 2

11



Proposition 5.1 implies that tile boundary treatment at the end-points of the interval is stable. Example

of such operators are given in [4].

\_ are ready to state the stability theorem for ttw linear constant coefficient case. In this case there

is no need for the spectral viscosity terms and we will ignore them. We assume that f = Au where A is

symmetric in equation (1.1) and in the same way f+ = A+u, f- = A-u where the eigenvalues of A + are

nonnegative and those of A- are nonpositive.

Theorem 5.2. Let UN, VN be the solutions of (5.1)-(5.2). Define

E(t) = (UN(X, t), UN (X, t)) N + (V._'(X, t), VN (X, t))N ,

then

E(t) _ E(O)

provided that

1 1
--, -- --,(5.7) 7-_ _< 7-_ >
2w0 2Wo

1 1
__-<- 2_--Z' _-"->- 2_-Z'

1 1
T1 --T3 ---- -- , 7-.2 -- 7*4 -'= --"

_3 0 O3 0

Proofi The proof follows from nmltiplying (5.1), (5.2) by u NT, "I'N-'Tand taking the scalar product. We use

Proposition 5.1 and the following notation

_o = _N(0, t), v0 = vN(0,t), _0_ = _oA+,,o, Zo_ = ,,oA%o, _o_ = .oA_vo

to get

1 d 1 __ (T1 -[- 1 +
2Wo dt E(t) -< (rl - --2_o)a+ ;-3)'Y+ + (T3 + 2--_,0)_0

(5.8) +(T2 --1 )a- 1 3-0- 2_o 0 - (_-'_+ r4)'y_-+ (_-.,+ _0)_

The conditions stated above for the Ti'S guarantee that the right hand side of (5.8) is nonpositive and

the proof is completed.

Remark: The Discontinuous Galerkin method applied to this problem leads to the upwinding choice rl --=

T4 = 0, 7"2= 73 = I___. Another attractive choice that involves no splitting of the fluxes is 71 = T2 -------T3 =
Ld0

__ l

--T4 -- 2-_o"

We turn now to the main purpose of this section, namely the proof of convergence in the nonlinear case

of the numerical solution to the correct entropy solution.

We first show that the spectral superviscosity terms do not create any problems: consider a compactly

supported (in [-1,1]) test function fig(x, t) in Cm[-1, 1], m is to be specified later.

Lemma 5.3. Let CN-i (x, t) and _/;u-l(x, t) be the Legendre interpolation polynomials of fig(x, t) in the

intervals [-1, 0] (with collocation points (j), and [0, 1] (with collocation points r/y), respectively. Then

(5.9)

(5.t0)

lim (¢N-1, SI"(UN)) = O,
N--coo

lira
N___+ca(_)N--1, "S'_ " (_)N ) ) _-- O.

12



where tile spectral superviscosities are defined in (5.3) aM (5.4).

Proofi Since uN is a polynomial of degree N it can be represented as

Therefore from (5.3)

N

uN(x) = Z f*_.,NP_.(2x + 1).
k=0

SI'(UN) = e N2,_ 1 x(x + 1) UN

N
1

= k*(k+ 1)%,NPk(2X + 1).
k=0

Also the test function ¢N-1 can be represented as

N

CN-1 = E Ck,_'Pk(2x + 1).
k=0

;From the orthogonality of tile Legendre polynomials it follows that

N

e 1
I(¢N-1, SI'(uN))I = _ Z Ck,Nfik,Nh*(k + 1)*(Pk(2X + 1), Pk(2x + 1)).

k=0

We can choose rn large enough such that.

C

and since fik and (Pk(2x + 1),Pk(2x + 1)) are bounded, the proof is established. Tile proof for (5.10) is

similar.

It is self evident that the form of the spectral viscosity SI" is crucial. In fact the factor 1 - x: is necessary

in the proof. Note that

(5.11) (0N--I,S_'(UN)) = (SV(¢N--I),'IN) = (S_r(¢N-I),IIN)N

We basically, proved that the first argument in the scalar product in the right hand side of (5.11) tends to

zero whereas the second argument is bounded. The relation (5.11) is not true for other forms of the spectral

viscosity where the factor 1 - x 2 does not appear.

Lemma 5.4. Let ri satisfy (5.8), then

OUN ' OVN , &%_ 1
(0N-t,--'_-)N -- (f(UN), _ )N -1- (V)N--1,--_--]N -- (I(vN), _ )N

(5.12) = (¢N-,, SV(UN)) + (¢N-,, SI'(VN))

Proof: Taking the scalar product, of equation (5.1) with CN-I and (5.2) with ¢N-1 and denoting by f(0, t) =

fo, for all the quantities one gets

OUN ,
OI_I(UN) )N = rico ( f+ (Uo) - f+(vo))Wo+ O.

13



(5.13)

(5.14)

Here we used the fact that ¢(-1, t) = ¢(1, t) = 0.

Now,

(5.15)

and by the same token

+T_¢o(:- (no) - :- (,,o))-o

+(_bN-1,SV(ttN))N,

OVN, ,, OI_! f(VN) )I_
(//!'N-I,-'_)N q- (1¢N-1, _X. ' = T3_')O (fq-(l)0) -- f+(//0)) ¢M0

T4_/'o (/-(Oo) - f-(uo)) wo

+(¢N-,, SV(v,J),,,-).

t Og,..f(,,x)(¢N-I O/-J(u:"))u = (¢x-1, )
' Ox Ox

OCN_1)= 6of(uo) - (I_f(uN),

= ¢of(uo) -- (f(UN), _)N

(5.16)
ar_! y(vN) a_/,__,.

(¢N-_, Oz )N = -¢o/(vo) - ff(vN),---55---)N.

Using (5.15)-(5.16) in (5.13)-(5.14) one gets

*N-l, O,_N'_ • [, OvN'_ O¢_v-1_'--] - (:(UN), _),_, + --(I(vN);_)N,"

= (f+(uo) - f+(vo))[T, Wo - 73w0 - 1]¢0 + (f-(uo) - f-(vo)) [T2W0 -- T4Wo -- 1]¢0

/ y+ (¢N-_,SI"(u,,,,))+ (VN-_,5'1(v,_,)).

Taking (5.8) into account, the lemma is proven.

t_ integrate now (5.12) with respect to time to get

T __O')¢N- 1 (VN. O_,N_I-/o{(,.N,°;r)-( o, '
= -- (UN(t = 0),¢N-l(t = 0)) -- (VN(t = O),'t/'N_l(t = 0)).

We now use Lemma 3.3 in Section 3 to convert uN, VN to U,_,_ VAx, which are defined in (1.2) as the

piecewise polynomials having the values of UN, VN at the grid points. Combining then with Lemma 5.3 it

follows:

Theorem 5.5. Let UN and VN be the multi-domain Legendre approximation (5.1)-(5.2) to (1.1). Assume

that the functions UA_ and V_x defined in (1.2) converge boundedly a.e., then the limit function is a weak

solution of (1.1).
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